تحليل محتوى کتب الفيزياء في المملکة العربية السعودية في ضوء التصميم الهندسي لمعايير الجيل القادم للعلوم NGSS. Analysis Content of Saudi Arabian Physics Textbooks in the Light of Engineering Design of Next Generation Science Standards

نوع المستند : بحوث فی مجال الإدارة التعلیمیة والتخطیط التربوی والدراسات المقارنة

المؤلفون

قسم المناهج وطرق التدريس، کلية التربية، جامعة الملک سعود، الرياض، المملکة العربية السعودية.

المستخلص

هدفت الدراسة الحالية إلى تحليل محتوى کتب الفيزياء في المملکة العربية السعودية في ضوء التصميم الهندسي لمعايير العلوم للجيل القادم NGSS. تکون مجتمع الدراسة من جميع کتب الفيزياء المقررة للمرحلة الثانوية -نظام مقررات-، وتکونت عينتها من جميع الأنشطة المقررة في تلک الکتب. ولتحقيق هدف الدراسة استخدم الباحثان المنهج الوصفي التحليلي بإعداد أداة لتحليل کتب الفيزياء في ضوء التصميم الهندسي لمعايير العلوم للجيل القادم في ثلاثة أبعاد: الأفکار الرئيسية، والممارسات العلمية والهندسية، والمفاهيم الشاملة. وتم التحقق من صدق أداة التحليل وثباتها على عينة استطلاعية. توصل الباحثان بعد إجراء عملية التحليل إلى نتائج من أهمها: تحقق الأبعاد الثلاثة في کتب الفيزياء للمرحلة الثانوية بالمملکة العربية السعودية، بنسبة منخفضة بلغت (33.33%)، ويعتبر بُعد الممارسات العلمية والهندسية الأکثر تحققاً، إذ احتل المرتبة الأولى بنسبة متوسطة بلغت (56.5%)، وجاء في الترتيب الثاني بُعد الأفکار الرئيسة بنسبة منخفضة بلغت (29.8%)، أما الترتيب الثالث فکان لبُعد المفاهيم الشاملة بنسبة منخفضة جداً بلغت (13.7%). ، کما أظهرت النتائج تباين مستويات إدراج المعايير في کل بُعد، ولم تظهر فروق دالة إحصائياً بين کتب الفيزياء في مستوى تحقق معايير التصميم الهندسي بمشروع معايير الجيل القادم لتعليم العلوم.
This study aimed to analyze content of physics textbooks according to Engineering Design of Next Generation Science Standards (NGSS). Population of the study consisted of all physics textbooks in secondary stage (course system), while its sample consisted of all the activities in physics textbooks. To achieve the aim of the study, a descriptive analytical method was used, through designing analysis tool based on engineering design of the NGSS in three dimensions, namely: Disciplinary Core Ideas, Science and Engineering Practices, and Crosscutting Concepts. A pilot study was conducted to assure the validity and reliability of the analysis tool. The overall results showed that all three dimensions was included in all physics textbook, with low percentage of (33.33%). More specifically, Science and Engineering Practices was the most included dimension with (56.5%), followed by Disciplinary Core Ideas with (29.8%), ending by Crosscutting Concepts with very low percentage of (13.7%). Furthermore, results showed variation of inclusion levels of standards in each dimension. Results found no statistically significant differences between physics textbooks with regard to inclusion level of engineering design standards of the NGSS.

الكلمات الرئيسية

الموضوعات الرئيسية


المراجع العربية

الباز، مروة محمد (2017). تطویر منهج الکیمیاء للصف الأول الثانوی فی ضوء مجال التصمیم الهندسی لمعاییر العلوم للجیل القادم NGSS وأثره فی تنمیة الممارسات العلمیة والهندسیة لدى الطلاب. مصر: مجلة کلیة التربیة ببور سعید، (22)، 1161-1206.
آل فیصل، حنان حسین (2016). تقویم مقررات الفیزیاء للمرحلة الثانویة فی ضوء مسابقات أولمبیاد الفیزیاء الدولی. دراسات عربیة فی التربیة وعلم النفس، (79)، 357-405.
برنامج التحول الوطنی (2016). تم استرجاعة على الرابط: (http://vision2030.gov.sa)
شرف، عبدالعلیم محمد (2015). الاتجاهات الحدیثة فی تدریس المفاهیم الفیزیائیة. مجلیة التربیة للبحوث التربویة والنفسیة والاجتماعیة، 4 (163)، 58-133.
طعیمه، رشدی أحمد (2008). تحلیل المحتوى فی العلوم الإنسانیة. القاهرة: دار الفکر العربی.
عبدالسلام، مصطفى عبدالسلام (2009). الاتجاهات الحدیثة فی تدریس العلوم. القاهرة: دار الفکر العربی.
عیسى، هناء عبدالعزیز (2017). رؤیة مقترحة لتطویر التربیة الجیولوجیة عبر المراحل الدراسیة المختلفة من منظور معاییر العلوم للجیل القادم NGSS. مجلة التربیة العلمیة، 20 (8)، 143-196.
فقیهی، یحیى علی (1430). أین موقعنا منها؟ برامج ومشاریع إصلاح تعلیم العلوم العالمیة. مجلة المعرفة، تم استرجاعه فی 4/11/2018 على الرابط: http://www.almarefh.net/show_content_
قسوم، نضال (2013). تدریس العلوم فی العالم العربیّ یحتاج إلى قفزة کبیرة وفوریة. تم استرجاعه فی 4/11/2018 على الرابط: http://blog.icoproject.org/?p=576
نصر، ریحاب أحمد (2015). تطویر مناهج العلوم للمرحلة الابتدائیة فی ضوء معاییر الجیل القادم NGSS وأثره على تنمیة التفکیر التأملی لدى تلامیذ المرحلة الابتدائیة. مجلة الدراسات التربویة والإنسانیة، 7 (3).رة التربیة والتعلیم المصرية.

1)           المراجع العربية مترجمة

Translaton of the Arabic References
Al-Ahmad, N.& Al-Buqmi, M. (2017). Analyzing the content of physics textbooks in the Kingdom of Saudi Arabia based on the next generation science standards NGSS. The Jordanian Journal of Educational Sciences, 13 (3), 326-309.
Al-Baz, M. (2017). Developing the curriculum of chemistry for the first secondary class based on the field of engineering design of the next generation science standards (NGSS) and its impact on the development of scientific and engineering practices among students. Egypt: Journal of the Faculty of Education in Port Said, (22), 1161-1206.
Al Faisal, H. (2016). Evaluation of the physics courses for the secondary stage based on  the International Physics Olympiad competitions. Arab Studies in Education and Psychology, (79), 357-405.
National Transformation Program (2016). Retrieved on the link: (http://vision2030.gov.sa)
Sharaf, A. (2015). The modern trends in teaching physics concepts. Journal of Education for Educational, Psychological and Social Research, 4 (163), 58-133
Taaima, R. (2008). Content analysis in the humanities. Cairo: Dar Al-Fikr Al-Arabi
Abd Al-Salam, M. (2009). The Modern trends in science Teaching. Cairo: Dar Al-Fikr Al-Arabi.
Issa, Hanaa A. (2017). A proposed vision to develop geological education across the different academic stages from the perspective of the science standards for the next generation NGSS. Journal of Scientific Education, 20 (8), 143-196.
Jurist, Y. (1430). Where is our location from them? Global science education reform programs and projects. Knowledge Journal, retrieved on 11/4/2018 at the link: http://www.almarefh.net/show_content_
Guessoum, N. (2013). Science teaching in the Arab world needs a huge and immediate leap. Retrieved November 4, 2018, at: http://blog.icoproject.org/?p=576
Nasr, R. (2015). Developing science curricula for the elementary stage based on the standards of the next generation (NGSS) and its effect on the development of reflective thinking among elementary school students. Journal of Educational and Humanitarian Studies, 7 (3).
 

المراجع الأجنبية:

Boesdorfer, SB. (2017). Is Engineering Inspiring Change in Secondary Chemistry Teachers' Practices?, JOURNAL OF SCIENCE TEACHER EDUCATION,  28, 609-630
Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P-12 classrooms. Journal of Engineering Education,97, 369- 386
Concannon, J. & Brown, PL. (2017). Windmills by design: Purposeful curriculum design to meet next generation science standards in a 9-12 physics classroom, SCIENCE ACTIVITIES, 54, 1-7
Chabalengula, V. & Mumba, F. (2017). Engineering design skills coverage in K-12 engineering program curriculum materials in the USA. International Journal of Science Education, 39, 2209-2225
Douglas, J., Iversen, E., & Kalyandurg, C. (2004). Engineering in the K-12 classroom: An analysis of current practices and guidelines for the future. Washington, DC: ASEE Engineering K-12 Center
Granucci, N., Jenkins, C.,  Bauer, M., Gard, AL., Pinkerton, B. & Broadbridge, C. (2017). Teaching Materials Science and Engineering (MSE) in the Pre-College Classroom as a Vehicle for NGSS Implementation, MRS ADVANCES, 2, 1661-1666
Grubbs, M., & Strimel, G. (2015). Engineering Design: The Great Integrator, Journal of STEM Teacher Education, 50, Iss. 1 , Article 8. Available at:https://ir.library.illinoisstate.edu/jste/vol50/iss1/8
Granucci, N., Jenkins, C.,  Bauer, M., Gard, AL., Pinkerton, B. & Broadbridge, C. (2017). Teaching Materials Science and Engineering (MSE) in the Pre-College Classroom as a Vehicle for NGSS Implementation, MRS ADVANCES, 2, 1661-1666
King, D. & English, L. (2016). Engineering design in the primary school: applying stem concepts to build an optical instrument, International Journal of Science Education, 38, 2762-2794
Kristin, L. G. & Tolbert, S. (2018). The imperative to move toward a dimension of care in engineering education: J Res Sci Teach, 55, 938- 961
Maeng, J., Whitworth, B., Gonczi, A., Navy, S. & Wheeler, L. (2017). Elementary science teachers’ integration of engineering design into science instruction: results from a randomised controlled trial, International Journal of Science Education, 39,  1529-1548
National Academy of Engineering and National Research Council (2009). Engineering in K-12 education: Understanding the status and improving the prospects. Washington, DC: National Academies Press. https://www.nap.edu/catalog/12635/engineering-in-k-12-education-understanding-the-status-and-improving
National Research Council (2012). A Framework for k-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
NGSS Lead States (2013). APPENDIX I – Engineering Design in the NGSS: For states, by states. Washington, DC; National Academies Press
Peterman, K., Daugherty, J., Custer, R. & Ross, J. (2017). Analysing the integration of engineering in science lessons with the Engineering-Infused Lesson Rubric, International Journal of Science Education, 39, 1913-1931
Ribeiro, L. R. C. (2011). The pros and cons of problem-based learning from the teacher’s standpoint. Journal of University Teaching & Learning Practice, 8(1), Retrieved from http://ro.uow.edu.au/ jutlp/vol8/iss1/4
Senider, C. (2012). Core Ideas of Engineering and Technology. Nsta's Journal. Retrieved at: http://nstahosted.org/pdfs/ngss/resources/201201_Framework-Sneider.pdf