تصميم بيئة تعلم الکترونية تکيفية وأثرها في تنمية مهارات الفهم الاستماعي والتعلم الالکتروني لدى طلاب شعبة اللغة الإنجليزية . Designing an electronic adaptive learning environment and its effect on developing listening comprehension and e-learning skills among EFL majors

نوع المستند : بحوث فی مجال المناهج وطرق التدریس

المؤلفون

1 کلية التربية- جامعة الأزهر

2 قسم تکنولوجيا التعليم والمعلومات، کلية التربية، جامعة الأزهر، مصر.

المستخلص

هدفت الدراسة إلى قياس أثر تصميم بيئة تعلم الکترونية تکيفية قائمة على أساليب التعلم المختلفة (سطحي/ عميق/ استراتيجي) لتنمية مهارات الفهم الاستماعي، ومهارات التعلم الالکتروني لدى طلاب شعبة اللغة الإنجليزية، ولتحقيق ذلک استخدمت الدراسة خمس أدوات هي: اختبار مهارات الفهم الاستماعي؛ واختبار تحصيلي للجوانب المعرفية المرتبطة بمهارات التعلم الإلکتروني؛  وبطاقة ملاحظة لمهارات التعلم الإلکتروني، ومقياس الانطباع الذاتي نحو البيئة التکيفية؛ ومقياس أنماط التعلم (ASSIST) لانتوستل، وتکونت عينة البحث من (58) طالب من طلاب شعبة اللغة الإنجليزية بکلية الآداب والعلوم بعقلة الصقور بجامعة القصيم، وکشفت النتائج عن أثر تصميم بيئة تعلم الکترونية تکيفية على تنمية مهارات الفهم الاستماعي ومهارات التعلم الالکتروني لدى طلاب شعبة اللغة الإنجليزية، کما أکدت النتائج تفوق الطلاب ذوي نمط التعلم الاستراتيجي عن الطلاب ذوي نمط التعلم السطحي والعميق في مهارات الفهم الاستماعي ومهارات التعلم الالکتروني.
The current study aimed at investigating the effect of an electronic adaptive learning environment (EALE) on developing EFL undergraduate students' listening comprehension and e-learning skills, in addition, the study also sought to find out any relationship between  three different learning styles (surface, deep and strategic) and both listening comprehension and e-learning skills. To achieve this, five tools were utilized: an EFL listening comprehension test; an e-learning skills test; a self-reflection form; a learning styles inventory (ASSIST) by Entwistle & McCune (2013), and an observation form.  Participants of the study comprised of 58 undergraduate EFL majors in the College of Science and Arts in Uqlat Assugour, Qassim University. Results obtained revealed that students listening comprehension skills and e-learning skills have been developed due to the use of the environment and that they have been satisfied with their activities, and that the drawbacks that emerged can be overcome easily in future studies. In addition, strategic learners outperformed surface and deep learners in developing their listening comprehension and e-learning skills.
 

الكلمات الرئيسية

الموضوعات الرئيسية


1-    المراجع الأجنبية:
Attia, A.E. & Mohammed, S.M. (2019). Shifting from the Reductive Mechanical to the Empowering Learner Training Model: A Metacognitive-in-Action Approach to Listening Instruction. Journal of Education, College of Education, Al-Azhar University, 181(3): 11-44.
Agbo F.J., Oyelere S.S. (2019) Smart mobile learning environment for programming education in Nigeria: Adaptivity and context-aware features. In: Arai K., Bhatia R., Kapoor S. (eds.) Intelligent computing. CompCom 2019. Advances in Intelligent Systems and Computing, Vol 998. Springer, Cham
Alavi, S. M., & Janbaz, F. (2014). Comparing two pre-listening supports with Iranian EFL learners: Opportunity or obstacle. RELC Journal, 45(3), 253-267
Alhasan, K., Liming, C. & Feng C. (2017). Semantic modelling for learning styles and learning material in an e-learning environment. International Conference on E-Learning, 71–79.
Amory, A. (2015). Models to support learning and teaching with technology. Johannesburg: Saide. Amory, A., Rahiman, F., & Mhlanga, E. (2015). Rapid research on the use of ICT in education (RFP15/1116). Johannesburg: Saide.
Alotaibi, A. S. (2015). Improving learning skills based on artificial intelligent technique. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), Volume 4(1), 125-142.
Bansal, N., 2013. Adaptive recommendation system for MOOC, PhD thesis, Indian Institute of Technology, Bombay.
Chang, A. C., & Millett, S. (2016). Developing L2 listening fluency through extended listening-focused activities in an extensive listening programme. RELC Journal, 47(3), 349-362.‏
Chang, A., Millett, S., & Renandya, W. A. (2018). Developing listening fluency through supported extensive listening practice. RELC Journal, 0033688217751468
Chenowth,  Ushida  &  Murday,  K  (2003).  Measuring student learning in an online French Course , CALICO Journal, 20(2),285-314
Chow, B. W., Chiu, H. T., & Wong, S. W. (2018). Anxiety in reading and listening English as a foreign language in Chinese undergraduate students. Language Teaching Research, 22(6), 719-738
Despotović-Zrakić, M., Simić, K., Labus, A., Milić, A., & Jovanić, B. (2013). Scaffolding environment for e-learning through cloud computing. Journal of Educational Technology & Society, 16(3), 301–314
Dounas, L., Salinesi, C., & El Beqqali, O. (2019). Requirements monitoring and diagnosis for improving adaptive e-learning systems design. Journal of Information Technology Education, 18, 161–184.
Drissi, S., & Amirat, A. (2016). An adaptive E-learning system based on student's learning styles: An empirical study. International Journal of Distance Education Technologies (IJDET), 14(3), 34-51.
Entwistle, N. (1981). Styles of learning and teaching. New York: John Wiley & Sons.
Fardon, M. (2013). Relationships between students' learning style preference and exam achievement in differing forms of assessment during an advanced apprenticeship at a vocational Further Education College. Institute of Learning, Department of Education, University of Oxford. Retrieved from:
           https://set.et-foundation.co.uk/media/897442/2013_Mark-Fardon-PRP-article.pdf
Graf, S. (2013) Dynamic student modelling of learning styles for advanced adaptivity in learning management, International Journal of Information Systems and Social Change, 4(1),    85-100
Graf, S., Kinshuk, K. B., Khan, F. A., Maguire, P., Mahmoud, A., Rambharose, T., & Zhang, Q. (2012). Adaptivity and personalization in learning systems based on students’ characteristics and context. In The 1st international symposium on smart learning environment (pp. 33-36). ‏
Holzhüter, M., Frosch-Wilke, D., & Klein, U. (2013). Exploiting learner models using data mining for e-learning: a rule based approach. In Intelligent and Adaptive Educational-Learning Systems (pp. 77-105). Springer, Berlin, Heidelberg.
Hussani,   K.,   Nahvi,   A.   &   Ahmadi,   A.   (2013).   Design   and implementation of an intelligent virtual environment for improving speaking and listening skills. Interactive Learning Environments, Retrieved January 1st, 2017, from:  http://www.site.uottawa.ca/~khass103/Papers/NILE2013.pdf .  
Johnson, B., & Christensen, L. (2000). Educational research: Quantitative and qualitative approaches. Allyn & Bacon.
Kanaksabee, P., Odit, M. P., & Ramdoyal, A. (2011). A standard-based model for adaptive E-learning platform for Mauritian academic institutions. Journal of International Education Research, 7(1) Retrieved from https://search-proquest-com.sdl.idm.oclc.org/docview/1418217952?accountid=142908
Khosravi, H. (2017). Recommendation in personalised peer-learning environments. JEDM-Journal of Educational Data Mining, 9(1), 42–67.
Kop, R., & Hill, A. (2008). Connectivism: Learning theory of the future or vestige of the past? The International Review of Research in Open and Distributed Learning, 9(3). https://doi.org/10.19173/irrodl.v9i3.523
Kostolanyova, K., & Simonova, I. (2018, July). Learning English through the adaptive model of e-learning reflecting learner’s sensory characteristics. In International Conference on Blended Learning, Proceedings (pp. 57-68). Springer, Cham.‏
Kuznetsova, N., & Soomro, K. A. (2019). Students’ Out-of-class Web 2.0 Practices in Foreign Language Learning. Journal of Education and Educational Development, 6(1), 78-94. ‏
Miklovíková, M., & Malčík, M. (2016, March). Holistic and serialistic thinking as a factor influencing text comprehension and strategy for dealing with tasks. In INTED: 10th International Technology, Education and Development Conference. Proceedings (pp. 2897-2902).‏
Miroslav, T., Dragan, D. & Biljana M. (2007). Distance learning and foreign language teaching. Balkan Conference in Informatics, Bulgaria. Proceedings, pp.441-452. hal-00190064⟩
 Nafea, S., Maglaras, L., Siewe, F., Smith, R., and Janicke, H. (2016). Personalised students’ profile based on ontology and rule-based reasoning. EAI Endorsed Transactions on e-Learning. 3(12),328-335.
Nakic, J., Granic, A., & Glavinic, V. (2015). Anatomy of student models in adaptive learning systems: A systematic literature review of individual differences from 2001 to 2013. Journal of Educational Computing Research, 51(4), 459-489.‏
Ortlipp, M. (2008). Keeping and using reflective journals in qualitative research process. The Qualitative Report, 13 (4): 695-705.
Oteir, I., & Aziz, N. H. A. (2017). Effects of listening comprehension anxiety from Saudi EFL learners’ perspectives. International Journal of Linguistics, 9(5), 113-125. ‏
Premlatha, K. R., & Geetha, T. V. (2015). Learning content design and learner adaptation for adaptive e-learning environment: A survey. The Artificial Intelligence Review, 44(4), 443-465.
Popescu, E. (2010). Adaptation provisioning with respect to learning styles in a web-based educational system: An experimental study. Journal of Computer Assisted Learning, 26(4), 243–257. doi:10.1111/j.1365- 2729.2010.00364.x
Rahimirad, M., & Moini, M. R. (2015). The challenges of listening to academic lectures for EAP learners and the impact of metacognition on academic lecture listening comprehension. Sage Open, 5(2), 2158244015590609.
Ruffini, M.F. 2002. Designing an On-Line Course Map Using Concept Mapping Techniques. Educational Assessment, 7(2): 1-18.
Rutherford, S. M., Limorenko, G., & Shore, A. (2016). Correlations between learning styles and perceptions of Collaborative Learning in Higher Education. Ireland International Conference on Education (IICE-2016), Dublin, Ireland, 24-26 October. Avaible online at: http://orca.cf.ac.uk/101347/1/Rutherford%20IICE%20October%202016%20REVISED.pdf
 Sfenrianto, S., Hartarto, Y. B., Akbar, H., Mukhtar, M., Efriadi, E., & Wahyudi, M. (2018). An adaptive learning system based on knowledge level for English learning. International Journal of Emerging Technologies in Learning, 13(12), 191-200.
Shaw, R. L. (2010). Embedding reflexivity within experiential qualitative psychology. Qualitative Research in Psychology, 7 (33): 233-243.
Song, M. Y. (2012). Note-taking quality and performance on an L2 academic listening test. Language Testing, 29(1), 67-89. ‏
Tarus, J. K., Niu, Z., & Mustafa, G. (2018). Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning. Artificial Intelligence Review, 50(1), 21-48
Truong, H. M. (2016). Integrating learning styles and adaptive e-learning system: Current developments, problems and opportunities. Computers in Human Behavior, 55, 1185-1193.
Wang, M., & Hu, F. (2018). Construction and verification of effectiveness of English listening teaching model based on interactive model theory. Theory and Practice in Language Studies, 8(7)
Whittenburg, J. B. (2011). Adapting to adaptive e learning: Utilizing adaptive e-learning programs within educational institutions (Order No. 3478041). Available from Education Database. (907550568). Retrieved from https://search-proquest-com.sdl.idm.oclc.org/docview /907550568? Accountid=142908
Woolf, B. P. (2010). Student modeling. Advances in Intelligent Tutoring Systems (pp. 267-279). Springer, Berlin, Heidelberg.‏
Yang, T.-C., Hwang, G.-J., & Yang, S. J.-H. (2013). Development of an adaptive learning system with multiple perspectives based on students’ learning styles and cognitive styles. Journal of Educational Technology & Society, 16(4),               185–200.
Yıldırım, S., & Yıldırım, Ö. (2016). The importance of listening in language learning and listening comprehension problems experienced by language learners: A literature review. Journal of Abant İzzet Baysal University Faculty of Education, 16(4): 2094–2110.