القدرة المکانية وعلاقتها بقلق الرياضيات لدى التلاميذ ذوي صعوبات تعلم الرياضيات والعاديين بالصف الرابع الابتدائي The Spatial Ability and its Relationship with Math Anxiety of Pupils with Math Learning Disabilities and Normal Achieving Pupils in the Primary Fourth Grade

نوع المستند : بحوث فی مجال علم النفس والصحة النفسیة

المؤلف

أستاذ مساعد بقسم التربية الخاصة – کلية التربية جامعة الملک خالد

المستخلص

هدفت الدراسة إلى معرفة القدرة المکانية وعلاقتها بقلق الرياضيات لدى التلاميذ ذوي صعوبات تعلم الرياضيات والعاديين. وتکونت عينة الدراسة من (32) تلميذاً من ذوي صعوبات تعلم الرياضيات بمتوسط عمري (114.21) شهراً، وانحراف معياري (1.83)، (32) من العاديينبمتوسط عمري (113.58) شهراً، وانحراف معياري (2.20)، تم اختيارها من بين تلاميذ الصف الرابع الابتدائي من بعض مدارس مدينة أبها بالمملکة العربية السعودية. واستخدمت الدراسة اختبارات القدرة المکانية (اختبار مستوى الماء، اختبار تدوير البطاقات، اختبار طي الورقة) ومقياس قلق الرياضيات (إعداد: الباحث). وأظهرت نتائج الدراسة وجود ارتباط سالب دال إحصائياً بين القدرة المکانية (الأبعاد، الدرجة الکلية) وقلق الرياضيات لدى التلاميذ ذوي صعوبات تعلم الرياضيات. کذلک أظهرت وجود فروق دالة إحصائياً بين متوسطي درجات التلاميذ ذوي صعوبات تعلم الرياضيات والعاديين في القدرة المکانية (الأبعاد، الدرجة الکلية) لصالح العاديين وفي قلق الرياضيات لصالح ذوي صعوبات تعلم الرياضيات. کما أظهرت الدراسة أن أبعاد القدرة المکانية تتنبأ بشکل دال إحصائياً بقلق الرياضيات لدى التلاميذ ذوي صعوبات تعلم الرياضيات.
The present study aimed to identify the spatial ability andits relationship with math anxiety of primary fourth grade pupils with math learning disabilities (MLD) and normal-achieving pupils. Sample of the study consists of (64) pupils (32 with math learning disabilities and 32 normal-achieving). It has been chosen from primary stage in the 4th grade in some schools of the city of Abha. The study usedtwo diagnostic measures of the math and reading learning disabilities (prepared by Al-Zayat, 2007), Water level test, Card rotation test, Paper folding test, and Math anxiety scale (prepared by the researcher). The results showed a significant negative association between the spatial ability (spatial perception, mental rotation and spatial visualization) and math anxiety of MLD. There are also statistically significant differences between the pupils with MLD and normal-achieving pupils in the spatial ability and its dimensions for the sake of the normal-achieving and in the math anxiety for the sake of MLD. The results also showed that dimensions of the spatial ability are a significant predictor of math anxiety of pupils with math learning disabilities.

الكلمات الرئيسية

الموضوعات الرئيسية


 أبو مصطفی، سهیلة سلیمان.(2010). العلاقة بین القدرة المکانیة والتحصیل فی الریاضیات لدى طلبة الصف السادس الأساسی بمدارس وکالة الغوث . رسالة ماجستیر، کلیة التربیة، الجامعة الإسلامیة بغزة، فلسطین. مسترجعة من http://library.iugaza.edu.ps/thesis/90385.pdf
الأزوری، عبد الشکور مصلح سالم.(1435ه). العلاقة بین التصور البصری المکانی والتحصیل فی مادة الریاضیات لدى تلامیذ المرحلة الابتدائیة بمحافظة الطائف. رسالة ماجستیر، کلیة التربیة، جامعة أم القرى، المملکة العربیة السعودیة. مسترجعة من  http://b7oth.com/?p=8781
الزیات، فتحی مصطفى.(2007). بطاریة مقاییس التقدیر التشخیصیة لصعوبات التعلم – دلیل البطاریة. القاهرة: دار النشر للجامعات .
السید، فؤاد البهی.(1979). علم النفس الإحصائی وقیاس العقل البشری (ط3). القاهرة: دار الفکر العربی.
الکبیسی، عبد الواحد حمید.(2007). القیاس والتقویم: تجدیدات ومناقشات. عمان: دار جریر.
آل شارع، عبد الله النافع.، القاطعی، عبد الله على.، والجوهرة، سلیمان السلیم.(1416ه).برنامج التعرف على الموهوبین والکشف عنهم: اختبار وکسلر لذکاء الأطفال المعدل - الصورة السعودیة (المجلد الثانی). الریاض: مدینة الملک عبد العزیز للعلوم والتقنیة.
Ashkenazi, S., Rosenberg-Lee, M., Tenison, C., & Menon, V. (2012). Weak task-related modulation and stimulus representations during arithmetic problem solving in children with developmental dyscalculia. Developmental Cognitive Neuroscience, 2(1), S152–S166. doi:10.1016/ j.dcn.2011.09.006
Assel, M. A., Landry, S. H., Swank, P., Smith, K. E., & Steelman, L. M. (2003). Precursors to mathematical skills: Examining the roles of visual-spatial skills, executive processes, and parenting factors. Applied Developmental Science, 7, 27–38. doi:10.1207/S1532480 XADS0701_3
Barbaresi, W. J., Katusic, S. K., Collagin, R. C., Weaver, A. L., & Jacobsen, S. J. (2005). Math learning disorder: Incidence in a population-based birth cohort, 1976-82, Rochester, Minn. Ambulatory Pediatrics, 5, 281-289. doi:10.1007/s10803-008-0645-8
Booth, R. D. L., & Thomas, M. O. J. (1999). Visualization in mathematics learning: Arithmetic problem solving and student difficulties. Journal of Mathematical Behavior, 18(2), 169–190. doi:10.1016/S0732-3123 (99)00027-9
Caputo, A., & Langher,V. (2015). Validation of the Collaboration and Support for Inclusive Teaching Scale in Special Education Teachers. Journal of Psychoeducational Assessment, 33(3), 210-222.doi: 10.1177/0734282914548335
Carey, E., Hill, F., Devine, A., & Szücs, D.(2015). The Chicken or the Egg? The Direction of the relationship between mathematics anxiety and mathematics performance. Frontiers in psychology, 6(1987), 1-6. doi:10.3389/fpsyg.2015.01987
Chen,C., & Czerwinski, M.(1997). Spatial ability and visual navigation: An empirical study. New Review of Hypermedia and Multimedia,3(1), 67– 89. doi:10.1080/13614569708914684
Chiu, L., & Henry, L. L. (1990). Development and validation of the mathematics anxiety scale for children. Measurement and Evaluation in Counseling and Development, 23(3), 121-127. Retrieved from http://eric.ed.gov/?id=EJ426832
Desoete, A. (2015). Predictive indicators for mathematical learning disabilities/dyscalculia in kindergarten children. In S. Chinn (ed.), The Routledge international handbook of dyscalculia and mathematical learning difficulties      (pp. 90-100). London & New York: Routledge.
Devine, A., Fawcett, K., Szűcs, D. & Dowker, A. (2012). Gender differences in mathematics anxiety and the relation to mathematics performance while controlling for test anxiety. Behavioral and Brain Functions, 8(33), 1-9. doi:10.1186/1744-9081- 8-33
Ekstrom, R. B., French, J. W., & Harman, H. H. (1976).Manual for Kit of factor-referenced cognitive tests. Princeton, NJ: Educational Testing Service.
Farenga, S.J., & Ness, D. (2015). Encyclopedia of education and human development. Armonk, NY: Routledge.
Ferguson, A. M., Maloney, E. A., Fugelsang, J., & Risko, E. F. (2015). On the relation between math and spatial ability: The case of math anxiety. Learning and Individual Differences, 39, 1-12. doi:10.1016 /j.lindif.2015.02.007
Fias, W., Menon, V., & Szucs D. (2013). Multiple components of developmental dyscalculia. Trends in Neuroscience and Education, 2(2), 43–47. doi:10.1016/j.tine.2013.06.006
Fuchs, L. S., Fuchs, D., & Prentice, K. (2004). Responsiveness to mathematical problem-solving instruction: Comparing students at risk of mathematics disability with and without risk of reading disability. Journal of Learning Disabilities, 37(4), 293–306. doi: 10.1177/ 00222194040370040201
Geary, D. C.(2004). Mathematics and learning disabilities. Journal of learning disabilities, 37(1), 4-15. doi: 10.1177/00222194040370010201
Geary, D. C. (2011a). Cognitive predictors of achievement growth in mathematics: a 5-year longitudinal study. Developmental Psychology, 47(6): 1539–1552. doi: 10.1037/a0025510
 
 
Geary, D. C. (2011b). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental & Behavioral Pediatrics, 32(3):250-263. doi:10.1097/DBP.0b013e318209edef
Gierl, M. J., & Bisanz, J. (1995). Anxieties and attitudes related to mathematics in grades 3 and 6. Journal of Experimental Education, 63(2), 139-159. doi:10.1080/00220973.1995.9943818
Goswami,U., & Szűcs,D.(2011). Educational neuroscience. Developmental mechanisms: towards a conceptual framework. Neuroimage, 57, 651–658. doi:10.1016/j.neuroimage.2010.08.072
Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge: The role of the linear number line. Developmental Psychology, 48, 1229–1241. doi:10.1037/a0027433
Halpern, D. F., Benbow, C. P., Geary, D. C., Gur, R. C., Hyde, J. S., & Gernsbacher, M. A.(2007). The science of sex differences in science and mathematics. Psychological Science, 8, 1–51. doi:10.1111/ j.15291006.2007 .00032.x
Harris, J., Hirsh-Pasek, K. & Newcombe, N. S. (2013). A new twist on studying the development of dynamic spatial transformations: Mental paper folding in young children. Mind, Brain and Education, 7, 49-55.doi: 10.1111/mbe.12007
Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91, 684–689. doi:10.1037/0022-0663. 91.4.684
 
Jameson, M. M. (2013). The Development and validation of the children’s anxiety in math scale. Journal of Psychoeducational Assessment, 31(4) 391–395.doi:10.1177/0734282912470131
Janssen, A. B., & Geiser, C. (2010). On the relationship between solution strategies in two mental rotation tasks. Learning and Individual Differences, 20, 473–478. doi:10.1016/j.lindif.2010.03.002
Jarvis, D. H., & Naested, I. (2012). Exploring the math and art connection: Teaching and learning between the lines. Calgary, AB: Brush Education.
Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). A longitudinal study of mathematical competencies in children with specific mathematics difficulties versus children with comorbid mathematics and reading difficulties. Child Development, 74(3), 834–850. doi: 10.1111/ 1467-624.00571
Kaltner, S., & Jansen, P. (2014). Mental rotation and motor performance in children with developmental dyslexia. Research in Developmental Disabilities, 35(3), 741–754. doi:10.1016/j.ridd.2013.10.003
Karaman, T., & Toğrol, A. Y. (2009). Relationship between gender, spatial visualization, spatial orientation, flexibility of closure abilities and performance related to plane geometry subject among sixth grade students. Bogazici University Journal education, 26(1), 1-25. doi: 5000139938/ 5000128191
Kaufman, S. B.(2007). Sex differences in mental rotation and spatial visualization ability: Can they be accounted for by differences in working memory capacity?. Intelligence, 35(3), 211-223. doi: 10.1016/j.intell.2006.07.009
 
Krajewski, K., & Schneider, W. (2009). Exploring the impact of phonological awareness, visual-spatial working memory and preschool quantity-number competencies on mathematics achievement in elementary school: findings from a 3-year longitudinal study. Journal of Experimental Child Psychology, 103, 516–531. doi:10.1016/ j.jecp.2009.03.009
Krinzinger, H., Kaufmann, L., & Willmes, K. (2009). Math anxiety and math ability in early primary school years. Journal of Psychoeducational Assessment, 27(3), 206–225.doi:10.1177/ 0734282908330583
Kumar,V.(2015). Understanding the dyscalculia. In A. Mathur; S. Kaur; Y. Sharma., & J. Padmanabhan. (eds.). Dimensions of innovations in education (87-94). New Delhi: New Delhi Publishers.
Lai, Y., Zhu, X., Chen, Y., & Li, Y. (2015). Effects of mathematics anxiety and mathematical metacognition on word problem solving in children with and without mathematical learning difficulties. PLoS ONE, 10(6),       1-19. doi:10.1371/journal.pone. 0130570
Lawton, C. A. (2010). Gender, spatial abilities, and wayfinding. In J. C. Chrisler & D. R. McCreary (Eds.), Handbook of gender research in Psychology( 317-341). New York: Springer.
Levine, S. C., Vasilyeva, M., Lourenco, F., Newcombe, N.S., & Huttenlocher, J. (2005). Socioeconomic status modifies the sex difference in spatial skill. Psychological Science, 16, 841–845. doi: 10.1111/j.1467-9280.2005.01623.x
Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex difference in spatial ability: a meta-analysis. Child Development, 56, 1479-1498. doi:10.2307/1130467
 
Ma, X., & Xu, J. (2004). The causal ordering of mathematics anxiety and mathematics achievement: a longitudinal panel analysis. Journal of Adolescence, 27(2), 165–179. doi:10.1016/j.adolescence.2003.11.003
Maeda, Y., & Yoon, S. (2013). A meta-analysis on gender differences in mental rotation ability measured by the Purdue Spatial Visualization Tests: Visualization of rotations (PSVT:R). Educational Psychology Review, 25, 69-94. doi:10.1007/s10648-012-9215-x
Maloney, E. A. (2011). The relation between math anxiety and basic numerical and spatial processing. Doctoral dissertation, University of Waterloo, Ontario, Canada. Retrieved from http://hdl.handle.net/ 10012/6154
Maloney, E. A., Waechter, S., Risko, E. F., & Fugelsang, J. (2012). Reducing the sex difference in math anxiety: The role of spatial processing ability. Learning and Individual Differences, 22(3), 380–384. doi:10.1016/ j.lindif.2012.01.001
McGlaughlin, S. M., Knoop, A. J. & Holliday, G. A. (2005). Differentiating students with mathematics difficulty in college: Mathematics disabilities vs. no diagnosis. Learning Disability Quarterly, 28, 223-232. doi: 10.2307/1593660
Meneghetti, C., Borella, E., & Pazzaglia, F. (2015). Mental Rotation Training: Transfer and Maintenance Effects on Spatial Abilities. Psychological research. doi:10.1007/s00426-014-0644-7.
Osmon, D.C., Smerz, J.M., Braun, M.M., & Plambeck, E. (2006). Processing abilities associated with math skills in adult learning disability. Journal of Clinical and Experimental Neuropsychology, 28(1), 84-95. doi: 10.1080/1380339049091812
 
Passolunghi, M. C., (2011) Cognitive and emotional factors in children with mathematical learning disabilities. International Journal of Disability, Development and Education, 58(1), 61-73. doi:10.1080/ 1034912X. 2011.547351
Passolunghi, M. C., Mammarella, I. C., & Altoè, G. (2008). Cognitive abilities as precursors of the early acquisition of mathematical skills during first through second grades. Developmental Neuropsychology, 33, 229–250. doi:10.1080/87565640801982320
Quaiser-Pohl, C., Lehmann, W., & Eid, M. (2004). The relationship between spatial abilities and representations of large-scale space in children- a structural equation modeling analysis. Personality and Individual Differences, 36, 95–107. doi:10.1016/S0191-8869(03) 00071-0
Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2013). Math anxiety, working memory, and math achievement in early elementary school. Journal of Cognition and Development, 14(2), 187-202. doi: 10.1080/15248372.2012.664593
Rubinsten, O., & Henik, A. (2009). Developmental Dyscalculia: heterogeneity might not mean different mechanisms. Trends in Cognitive Sciences, 13(2), 92-99. doi:10.1016/j.tics.2008.11.002
Rubinsten, O., & Tannock, R. (2010). Mathematics anxiety in children with developmental dyscalculia. Behavioral and Brain Functions, 6(46). 1-13.doi:10.1186/1744-9081-6-46
Russo, C., Tiegerman, E., & Radziewicz, C. K. (2008). RTI guide: Making it work, strategies = solutions. Port Chester, NY: National Professional Resources.
 
Saj, A., & Barisnikov, K. (2015). Influence of spatial perception abilities on reading in school-age children. Cogent Psychology, 2(1), 1 – 10. doi:10.1080/23311908.2015.1049736
Silver, C. H., Pennett, D., Black, J. L., Fair, G. W., & Balise, R. R. (1999). Stability of arithmetic disability subtypes. Journal of Learning Disabilities, 32, 108-119.doi: 10.1177/002221949903200202
Skagerlund, K., & Träff, U. (2014). Development of magnitude processing in children with developmental dyscalculia: Space, time, and number. Frontiers in Psychology, 5(675), 1-15. doi: 10.3389/ fpsyg. 2014.00675
Suárez-Pellicioni, M., Núñez-Peña, M.I., & Colomé,A. (2013). Mathematical anxiety effects on simple arithmetic processing efficiency: anevent-related potential study. Biological Psychology, 93, 517–526. doi: 10.1016/j.biopsycho.2013.09.012
Suinn, R. M., Taylor, S., & Edwards, R. W. (1988). Suinn mathematics anxiety rating scale for elementary school students (MARS-E): psychometric and normative data. Educational and Psychological Measurement, 48, 979-986. doi: 10.1177/0013164488484013
Swanson, H. L., Jerman, O., & Zheng, X. (2009). Math disabilities and reading disabilities: can they be separated?. Journal of Psychoeducational Assessment, 27(3), 175–196. doi: 10.1177/073 4282908330578
Thompson, J., Nuerk, H., Moeller, K., & Cohen K. R. (2013). The link between mental rotation ability and basic numerical representations. Acta Psychologica, 144, 324-331. doi: 10.1016/j.actpsy.2013.05.009
 
 
van Garderen, D.(2006). Spatial visualization, visual imagery, and mathematical problem solving of students with varying abilities. Journal of Learning Disabilities, 39(6), 496-506. doi: 10.1177/ 00222194060 390060201
 
van Garderen, D., & Montague, M. (2003). Visual‐spatial representation, mathematical problem solving, and students of varying abilities. Learning Disabilities Research & Practice, 18(4), 246–254. doi:10.1111/1540-5826.00079
Vasta, R., & Liben, L.S.(1996). The water-level task: An intriguing puzzle. Current Directions in Psychological Science, 5(6), 171–177. doi: 10.1111/ 1467-8721.ep11512379
Verdine, B.N., Irwin, C.M., Golinkoff, R.M., & Hirsh-Pasek, K. (2014). Contributions of executive function and spatial skills to preschool mathematics achievement. Journal of Experimental Child Psychology 126, 37-51. doi:10.1016/j.jecp.2014.02.012
Wu, S. S., Barth, M., Amin, H., Malcarne, V., & Menon, V. (2012). Math anxiety in second and third graders and its relation to mathematics achievement. Frontiers in Psychology. 3(162), 1-11. doi: 10.3389/ fpsyg.2012.00162
Yenilmez, ., & Kakmaci, O. (2015). Investigation of the relationship between the spatial visualization success and visual/spatial intelligence capabilities of sixth grade students. International Journal of Instruction, 8(1), 189 – 204. Retrieved fromhttp://www. e-iji.net/dosyalar/ iji_2015_ 1_14.pdf
Zach,S. , Inglis,V., Fox,O., Berger,I., & Stahl, A.(2015). The effect of physical activity on spatial perception and attention in early childhood. Cognitive Development, 36, 31–39. doi:10.1016/ j.cogdev.2015.08.003
Zhang, X., Koponen, T., Räsänen, P., Aunola, K., Lerkkanen, M.K., & Nurmi, J.E. (2014). Linguistic and spatial skills predict early arithmetic development via counting sequence knowledge. Child Development, 85(3), 1091-1107. doi: 10.1111/cdev.12173
Zhang, X., & Lin, D. (2015). Pathways to arithmetic: The role of visual-spatial and language skills in written arithmetic, arithmetic word problems, and nonsymbolic arithmetic. Contemporary Educational Psychology, 41, 188-197. doi:10.1016/j.cedpsych.2015.01.005